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Boundary conditions and variable ground state entropy
for the antiferromagnetic Ising model on a triangular lattice
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The ground state entropy density of the antiferromagnetic Ising model on a triangular lattice is considered in
the infinite volume limit as a function of boundary conditions on a finite triangular domain. The ground states
of this domain do not map to a dimer covering and so cannot be classified into string sectors. A parametrized
boundary condition is identified that allows the entropy density to be tuned to values between nondegeneracy
and maximal degeneracy. The results are compared to those for a rectangular periodic domain for which the
ground states can be classified into string sectors.
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I. INTRODUCTION order of the limits in Eq(1) can be reversed and the correct

. , ) value for S, obtained if it is calculated as
Frustrated systems are of considerable interest, in part be-

cause of their lack of order at zero temperatfire3]. They S =max lim {Iim S(V(B),T)}}, 2
possess a highly degenerate ground state and the entropy B VolT=0

density of the bulk system does not vanish as the temperatujg | by considering boundary conditiotisat give maximal
approaches zero. Geometric frustration has recently been agegeneracy

plied in diverse areas such as coding theory, spin glasses, we have shown previously that the finite AIT on a paral-
superconducting networks, quantum dynamics, high-densitjsjogram domain with free boundary spins is nondegenerate
chip design, protein folding, and neural computat|8R7],  and that finite size scaling calculations indicate that a trian-
and is increasingly being recognized as an organizing pringylar domain with free boundary spins is maximally degen-
ciple in a wide variety of physical systems. We describe hererate[10]. We identify in this paper boundary conditions on

a parametrized boundary condition for an archetypical frusg triangular domain that give variable degeneracy.
trated system, the classical antiferromagnetic Ising model on

a triangular lattice(AIT), that allows the ground state en-
tropy to be varied. Il. ENTROPY DENSITY AS A FUNCTION OF BOUNDARY
The entropy density at=0 in the thermodynami¢infi- CONDITIONS
nite volumg limit & is defined by[8]
The AIT with nearest neighbor interactions is fully frus-
S =lim lim SV, T), (1) trated, leading to ground state configurations whose number
T—0 V- grows asO(eM) for N spins, and to a finite entropy density at
T=0. Wannief{11] and Houtappe]12] computed the ground
whereS(V,T) denotes the entropy density for the system alstate entropy density as0.323R (note that the numerical
volume V and temperaturd. Implicit in Eq. (1) is some  value given in Ref[11] is incorrec}. We define the normal-
boundary condition, and we denote byB) the volume of  jzed entropy density at absolute zero for a finite system of
the domain with regulatas V— ) boundary conditiorB. spins with boundary conditior8, (N, B), by
The thermodynamic limi§(T)=lim,_.SV,T) is known to
exist and to be independent of the boundary conditions for S(N,B) = In W(N, B) 3)
T>0[8,9]. However, convergence &t0 is unclear and the ' 0.323N

order of the limits in Eq(1) is important[8,9]. For example, . . .
the AIT has a finite ground state entropy density in the therWhereW(N'B) is the number of ground state configurations,

modynamic limit, despite the fact that boundary conditionsS° that
can be chosen for a finite system such that .it is_ nondegener- max lim SO(N,B)] =1 (4)
ate atT=0 [10], implying zero entropy density in the ther- B | N

modyqamlc limit. An incorrect resglt is therefore obtained byWe address in this paper the thermodynamic limit par-
reversing the order of the limits in Eql). However, there ticular boundary conditions, i.e., the nature of

are some advantages to calculating the zero-temperature en- T

tropy based on finite-volume ensembles as a means of study- S(B) = lim Sy(N,B). (5)
ing infinite systems. Aizenman and Li¢8] showed that the N—oe

For the AIT it is known that boundary conditions exist
such thaiS,(B) =0 (the nondegenerate cag&0], and bound-
*Electronic address: rick@elec.canterbury.ac.nz ary conditions must exist such th&(B)=1. However, do
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boundary conditions exist such th&,(B)=y for any
0<y<1? This question has been answered in the affirma-
tive by Dharet al. [13] as follows. For a finite system on a
rectangular domain with periodic boundary conditions, the
ground states of the AIT can be mapped to dimer coverings
on the dualhexagongl lattice [14]. Superposing the dimers
of a particular ground state configuration with the dimers of
the standard configurationalternate rows of up and down
sping gives contiguousstrings of dimers for that ground
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state. The ground states are classified istiing sectors

each sector being specified by the number of strings. The

normalized entropy density, denoted &§p), in a sector with (a)

string density(number of strings divided by the number of

sites in a row p is given by[13]

1 2 wpl2
S(RP(p)) = alp) = @ip In2+ ;L |n[COS(X)]dX) ,

(6)

where RPp) denotes a rectangular periodic boundary condi-
tion with string densityp. The functiona(p) is zero forp

=0 andp=1, and peaks at unitymaximal degeneragyfor
p=2/3. Thesectors therefore represent manifolds of ground (b)
states that have different degeneracies, the degeneracy being
parametrized by the string density. Strings intersect the two
opposite edges of the boundary of the domain between each
pair of adjacent opposite spins. For a ground state configu-
ration the strings are constrained to occur in pairs that are
tightly packed(pass through adjacent sites of the dual lat-
tice). Therefore, for regular boundary conditions in which the
spins on one boundary edge are fixed such that adjacent
spins are identical or triples of sites contain opposite adjacent
spins, the string density, and thus the entropy density, can be

calculated.
Not all boundary conditions allow a dimer covering, how-
ever [14]. The dimer covering as described above results (c)

from each elementary triangle for a ground state having only o _ .

one unfavorable edg@n edge joining like spins For the FIG. 1. (@ The minimum energy configuration for the boundary
triangular domain, however, referring to Figalshows that ~condition T1l. Filled and open circles denote up and down spins,
a ground state requires only that the elementary triangle&spectively, and favorable and unfavorable interactions are denoted

labeled “a” in the figure have one unfavorable edge. An exdy broken and solid lines, respective{i) A ground state configu-
ample of a ground state configuration in which one of theration that has an elementary triangle with three unfavorable edges.

other triangles has three unfavorable edges is shown in FigS) The boundary condition T10.5), where fixed identical spins are

1(b). The ground states therefore do not admit a dimer cov="0Wn as filled circles and free spins by open circles.
ering and this domain presents a distinct case that cannot be S,(T1=0 7)
analyzed within the analytical framework of strings. '

Consider a triangular domain on which the spins are fixed For free boundary conditions, denoted by TF, the normal-
to be identical on one edge and free on the other two edgedged entropy density,(N, TF) was calculated by exact enu-
[Fig. (@], which we denote by'll. It is easy to show that meration of the number of ground states on domains of size
this system is nondegenerate. The lattice is decomposed intgp to N=325, and is plotted v& as the top curve in Fig.
individual triangles[labeled “a” in Fig. 1a)], and the mini- 2(a). We used an algorithrfiL5] that allows exact enumera-
mum energy corresponds to only one unfavorable edge faion up to sizeN~300 for certain boundary conditions,
each triangle. The bottom row of “a” triangles must thereforewhich corresponds te-10°° states. By standard finite size
have favorable edges on their other two sides, and so the&caling arguments,
next row of sites has identical spins that are opposite to the _ _1/2
spins in the bottom row. Continuing in this manner shows S(N.B) =~ $(B) +bN, - N — e, ®)
that the configuration in Fig.(4) is the only minimum en- for some constanb (which depends orB), which allows
ergy configuration and the system is nondegenerate, i.e., $,(B) to be estimated from the numerical d&#N,B). The
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FIG. 2. Normalized entropy densi(N, T1I(8))=v(B) (a) vs |
N and(b) vs N"Y2 for the values of8 as shown. The linear fits are . *
shown in(b). The top curves are fd&(N, TF). 08 . *
entropy densityS,(N, TF) is plotted versusN™'2 as the top I S
curve in Fig. 2b) for the larger values dfl, and is seen to be ) .
approximately linear for larghl (the left portion of the plot & 0al y
The value ofS(TF) was estimated by fitting a straight line ’ .
for N=100, and the number of data points used is denoted 0al .
by Ny and the relative rms error in the fit by This gives ’ .
S(TF) =1.02 with Ny=12 ande=0.04%, providing good . . . ‘
evidence that the free boundary case is maximally degener- % 02 04 0.6 0.8 1
ate, i.e., B
S(TFH =1. 9
(c)
TABLE I. Estimated entropy densitieASO(Tll(,B)) for various FIG. 3. (8 Normalized entropy density(8)=S(T11(8)) vs B
values ofg. (*). The curve show§(RP1KB)). (b) The relationship betwees
n and B’ such thatSy(T11(8))=S(RP1K3’)), and(c) the relationship
B S(T1I(B)) Ny e betweenp and B8 such thats,(T11(B)) =S(RP(p)).
0 1.02 12 0.0004 IIl. ABOUNDARY CONDITION GIVING VARIABLE
0.25 0.94 5 0.0018 DEGENERACY
0.33-- 0.87 6 0.0011
0.5 0.68 9 0.0010 Since the case T1I is nondegenerate and the case TF is
0.66-- 0.43 6 0.0006 maximally degenerate, we investigate the case, denoted
0.75 0.30 5 0.0007 T1I(B), for which Bn of contiguous spins on one edge are
1 0 fixed to identical values and the remaining boundary spins
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number of free sites is noN—Bn, which we simply referto  betweenB and B’ such thatS(T1I(B8))=S(RP1KA")) is
as N since no confusion should arise. The normalized enplotted in Fig. 3b). Note that this relationship is multivalued
tropy densityS(N, T11(B)) was calculated for different val- at 8=0 whereg’ € (0,1/3.
ues of3 as above and the results are plotted vs the number of Consider now the rectangular periodic domain in particu-
free sites in Fig. &). Inspection of the figure shows that the lar string sectors parametrized by the string denpitffhe
normalized entropy density fdd— < is a decreasing func- relationship betweeng and p such that S(T1I(B))
tion of B, i.e., =S(RP(p)) is plotted in Fig. 8c). This relationship is two-
- valued (except atB=0), i.e., two distinct boundary condi-
S(TLUE) =7B), (10 tions on the rectangular domain give the same entropy den-
wherey(0)=1 andy(1)=0. Plots of the entropy density ver- sity as for only one boundary condition on the triangular
susN™Y2 are shown in Fig. @), and values ofy(8) were  domain.
estimatedfor N> 25) and are listed in Table | and plotted in
Fig. 3@). Intermediate degeneracy can therefore be obtained IV. CONCLUSIONS
on a triangular domain as it can on a rectangular periodic
domain. The entropy density for the two domains can be The ground states of the triangular Ising model on a finite
compared by considering both a rectangular domain withriangular domain cannot be mapped to a dimer covering and
boundary condition analogous to TB), and a rectangular cannot therefore be classified into string sectors. Boundary
periodic domain parametrized by the string density. conditions exist for the triangular domain that give interme-
Consider first a rectangular periodic domain for which adiate degeneracy and show interesting relationships to the
fraction B of contiguous spins are fixed and the remainderrectangular periodic domain. Although it is known that cer-
are free on one edge, denotedRP1B), i.e., analogous to tain boundary conditions on finite frustrated systems can lift
the boundary condition T{B) for the triangular domain. the thermodynamic degeneracy, not a lot is known, the re-
Since strings intersect the boundary between opposite spingults of Dharet al. [13] notwithstanding, about the relation-
for the boundary conditioRP1K3) the string density can Ship between boundary conditions and degeneracy for gen-
take any value on the intervad, 1-8). Since a(p) is an eral . frustrated systems. For examp!e_, the manifold of
increasing function op for 0<p<2/3, for 1/3<B<1 the maX|m_aIIy degengrate bogndary con.d|t|ons corresponds to
number of states is dominated by that pt1-B. For the_str_lrjg sector vyltrp=2/3|f one restricts oneself to the set
B<1/3 the sectop=2/3 dominates. The normalized en- of limiting periodic boundary conditions on a rectangular

i ; : domain, but other maximally degenerate limiting boundary
tropy densityS(RP1 is therefore given b
Py Y=l (8) g y conditions exist. The same applies to boundary conditions

S(RPLB) =1, 0=pB<1/3 that give intermediate degeneracy.

=a(l-8), 13s=p<1, (11
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