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The ground state entropy density of the antiferromagnetic Ising model on a triangular lattice is considered in
the infinite volume limit as a function of boundary conditions on a finite triangular domain. The ground states
of this domain do not map to a dimer covering and so cannot be classified into string sectors. A parametrized
boundary condition is identified that allows the entropy density to be tuned to values between nondegeneracy
and maximal degeneracy. The results are compared to those for a rectangular periodic domain for which the
ground states can be classified into string sectors.
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I. INTRODUCTION

Frustrated systems are of considerable interest, in part be-
cause of their lack of order at zero temperature[1–3]. They
possess a highly degenerate ground state and the entropy
density of the bulk system does not vanish as the temperature
approaches zero. Geometric frustration has recently been ap-
plied in diverse areas such as coding theory, spin glasses,
superconducting networks, quantum dynamics, high-density
chip design, protein folding, and neural computation[3–7],
and is increasingly being recognized as an organizing prin-
ciple in a wide variety of physical systems. We describe here
a parametrized boundary condition for an archetypical frus-
trated system, the classical antiferromagnetic Ising model on
a triangular lattice(AIT ), that allows the ground state en-
tropy to be varied.

The entropy density atT=0 in the thermodynamic(infi-
nite volume) limit S0 is defined by[8]

S0 = lim
T→0

lim
V→`

SsV,Td, s1d

whereSsV,Td denotes the entropy density for the system at
volume V and temperatureT. Implicit in Eq. (1) is some
boundary condition, and we denote byVsBd the volume of
the domain with regular(as V→`) boundary conditionB.
The thermodynamic limitSsTd=limV→`SsV,Td is known to
exist and to be independent of the boundary conditions for
T.0 [8,9]. However, convergence atT=0 is unclear and the
order of the limits in Eq.(1) is important[8,9]. For example,
the AIT has a finite ground state entropy density in the ther-
modynamic limit, despite the fact that boundary conditions
can be chosen for a finite system such that it is nondegener-
ate atT=0 [10], implying zero entropy density in the ther-
modynamic limit. An incorrect result is therefore obtained by
reversing the order of the limits in Eq.(1). However, there
are some advantages to calculating the zero-temperature en-
tropy based on finite-volume ensembles as a means of study-
ing infinite systems. Aizenman and Lieb[8] showed that the

order of the limits in Eq.(1) can be reversed and the correct
value forS0 obtained if it is calculated as

S0 = max
B ˆ

lim
V→`h lim

T→0
S„VsBd,T…j‰ , s2d

i.e., by considering boundary conditionsthat give maximal
degeneracy.

We have shown previously that the finite AIT on a paral-
lelogram domain with free boundary spins is nondegenerate
and that finite size scaling calculations indicate that a trian-
gular domain with free boundary spins is maximally degen-
erate[10]. We identify in this paper boundary conditions on
a triangular domain that give variable degeneracy.

II. ENTROPY DENSITY AS A FUNCTION OF BOUNDARY
CONDITIONS

The AIT with nearest neighbor interactions is fully frus-
trated, leading to ground state configurations whose number
grows asOseNd for N spins, and to a finite entropy density at
T=0. Wannier[11] and Houtappel[12] computed the ground
state entropy density as,0.3231R (note that the numerical
value given in Ref.[11] is incorrect). We define the normal-
ized entropy density at absolute zero for a finite system ofN
spins with boundary conditionsB,S0sN,Bd, by

S0sN,Bd =
ln WsN,Bd
0.3231N

, s3d

whereWsN,Bd is the number of ground state configurations,
so that

max
B f lim

N→`
S0sN,Bdg = 1. s4d

We address in this paper the thermodynamic limit forpar-
ticular boundary conditions, i.e., the nature of

S0sBd = lim
N→`

S0sN,Bd. s5d

For the AIT it is known that boundary conditions exist
such thatS0sBd=0 (the nondegenerate case) [10], and bound-
ary conditions must exist such thatS0sBd=1. However, do*Electronic address: rick@elec.canterbury.ac.nz
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boundary conditions exist such thatS0sBd=g for any
0,g,1? This question has been answered in the affirma-
tive by Dharet al. [13] as follows. For a finite system on a
rectangular domain with periodic boundary conditions, the
ground states of the AIT can be mapped to dimer coverings
on the dual(hexagonal) lattice [14]. Superposing the dimers
of a particular ground state configuration with the dimers of
the standard configuration(alternate rows of up and down
spins) gives contiguousstrings of dimers for that ground
state. The ground states are classified intostring sectors,
each sector being specified by the number of strings. The
normalized entropy density, denoted byaspd, in a sector with
string density(number of strings divided by the number of
sites in a row) p is given by[13]

S0„RPspd… = aspd =
1

0.3231Sp ln 2 +
2

p
E

0

pp/2

lnfcossxdgdxD ,

s6d

where RPspd denotes a rectangular periodic boundary condi-
tion with string densityp. The functionaspd is zero for p
=0 andp=1, and peaks at unity(maximal degeneracy) for
p=2/3. Thesectors therefore represent manifolds of ground
states that have different degeneracies, the degeneracy being
parametrized by the string density. Strings intersect the two
opposite edges of the boundary of the domain between each
pair of adjacent opposite spins. For a ground state configu-
ration the strings are constrained to occur in pairs that are
tightly packed(pass through adjacent sites of the dual lat-
tice). Therefore, for regular boundary conditions in which the
spins on one boundary edge are fixed such that adjacent
spins are identical or triples of sites contain opposite adjacent
spins, the string density, and thus the entropy density, can be
calculated.

Not all boundary conditions allow a dimer covering, how-
ever [14]. The dimer covering as described above results
from each elementary triangle for a ground state having only
one unfavorable edge(an edge joining like spins). For the
triangular domain, however, referring to Fig. 1(a) shows that
a ground state requires only that the elementary triangles
labeled “a” in the figure have one unfavorable edge. An ex-
ample of a ground state configuration in which one of the
other triangles has three unfavorable edges is shown in Fig.
1(b). The ground states therefore do not admit a dimer cov-
ering and this domain presents a distinct case that cannot be
analyzed within the analytical framework of strings.

Consider a triangular domain on which the spins are fixed
to be identical on one edge and free on the other two edges
[Fig. 1(a)], which we denote byT1I. It is easy to show that
this system is nondegenerate. The lattice is decomposed into
individual triangles[labeled “a” in Fig. 1(a)], and the mini-
mum energy corresponds to only one unfavorable edge for
each triangle. The bottom row of “a” triangles must therefore
have favorable edges on their other two sides, and so the
next row of sites has identical spins that are opposite to the
spins in the bottom row. Continuing in this manner shows
that the configuration in Fig. 1(a) is the only minimum en-
ergy configuration and the system is nondegenerate, i.e.,

S0sT1Id = 0. s7d

For free boundary conditions, denoted by TF, the normal-
ized entropy densityS0sN,TFd was calculated by exact enu-
meration of the number of ground states on domains of size
up to N=325, and is plotted vsN as the top curve in Fig.
2(a). We used an algorithm[15] that allows exact enumera-
tion up to sizeN,300 for certain boundary conditions,
which corresponds to,1050 states. By standard finite size
scaling arguments,

S0sN,Bd < S0sBd + bN−1/2, N → `, s8d

for some constantb (which depends onB), which allows
S0sBd to be estimated from the numerical dataS0sN,Bd. The

FIG. 1. (a) The minimum energy configuration for the boundary
condition T1I. Filled and open circles denote up and down spins,
respectively, and favorable and unfavorable interactions are denoted
by broken and solid lines, respectively.(b) A ground state configu-
ration that has an elementary triangle with three unfavorable edges.
(c) The boundary condition T1Is0.5d, where fixed identical spins are
shown as filled circles and free spins by open circles.
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entropy densityS0sN,TFd is plotted versusN−1/2 as the top
curve in Fig. 2(b) for the larger values ofN, and is seen to be
approximately linear for largeN (the left portion of the plot).
The value ofS0sTFd was estimated by fitting a straight line
for Nù100, and the number of data points used is denoted
by Nd and the relative rms error in the fit bye. This gives
S0sTFd<1.02 with Nd=12 and e=0.04%, providing good
evidence that the free boundary case is maximally degener-
ate, i.e.,

S0sTFd = 1. s9d

III. A BOUNDARY CONDITION GIVING VARIABLE
DEGENERACY

Since the case T1I is nondegenerate and the case TF is
maximally degenerate, we investigate the case, denoted
T1Isbd, for which bn of contiguous spins on one edge are
fixed to identical values and the remaining boundary spins
are free, whereb is a constant and 0øbø1 [Fig. 1(c)]. The

TABLE I. Estimated entropy densitiesŜ0(T1Isbd) for various
values ofb.

b Ŝ0(T1Isbd) Nd e

0 1.02 12 0.0004

0.25 0.94 5 0.0018

0.33̄ 0.87 6 0.0011

0.5 0.68 9 0.0010

0.66̄ 0.43 6 0.0006

0.75 0.30 5 0.0007

1 0

FIG. 3. (a) Normalized entropy densitygsbd=S0(T1Isbd) vs b
(•). The curve showsS0(RP1Isbd). (b) The relationship betweenb
andb8 such thatS0(T1Isbd)=S0(RP1Isb8d), and(c) the relationship
betweenp andb such thatS0(T1Isbd)=S0(RPspd).

FIG. 2. Normalized entropy densityS0(N,T1Isbd)=gsbd (a) vs
N and(b) vs N−1/2 for the values ofb as shown. The linear fits are
shown in(b). The top curves are forS0sN,TFd.
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number of free sites is nowN−bn, which we simply refer to
as N since no confusion should arise. The normalized en-
tropy densityS0(N,T1Isbd) was calculated for different val-
ues ofb as above and the results are plotted vs the number of
free sites in Fig. 2(a). Inspection of the figure shows that the
normalized entropy density forN→` is a decreasing func-
tion of b, i.e.,

S0„T1Isbd… = gsbd, s10d

wheregs0d=1 andgs1d=0. Plots of the entropy density ver-
susN−1/2 are shown in Fig. 2(b), and values ofgsbd were
estimated(for N.25) and are listed in Table I and plotted in
Fig. 3(a). Intermediate degeneracy can therefore be obtained
on a triangular domain as it can on a rectangular periodic
domain. The entropy density for the two domains can be
compared by considering both a rectangular domain with
boundary condition analogous to T1Isbd, and a rectangular
periodic domain parametrized by the string density.

Consider first a rectangular periodic domain for which a
fraction b of contiguous spins are fixed and the remainder
are free on one edge, denoted byRP1Isbd, i.e., analogous to
the boundary condition T1Isbd for the triangular domain.
Since strings intersect the boundary between opposite spins,
for the boundary conditionRP1Isbd the string density can
take any value on the interval(0, 1−b). Sinceaspd is an
increasing function ofp for 0øp,2/3, for 1/3,b,1 the
number of states is dominated by that atp=1−b. For
b,1/3 the sectorp=2/3 dominates. The normalized en-
tropy densityS0(RP1Isbd) is therefore given by

S0„RP1Isbd… = 1, 0ø b ø 1/3

= as1 − bd, 1/3ø b ø 1, s11d

which is shown by the curve in Fig. 3(a). Note the similiar
behavior of S0(T1Isbd) and S0(RP1Isbd), although
S0(T1Isbd) is strictly less thanS0(RP1Isbd). The relationship

betweenb and b8 such thatS0(T1Isbd)=S0(RP1Isb8d) is
plotted in Fig. 3(b). Note that this relationship is multivalued
at b=0 whereb8P s0,1/3d.

Consider now the rectangular periodic domain in particu-
lar string sectors parametrized by the string densityp. The
relationship betweenb and p such that S0(T1Isbd)
=S0(RPspd) is plotted in Fig. 3(c). This relationship is two-
valued (except atb=0), i.e., two distinct boundary condi-
tions on the rectangular domain give the same entropy den-
sity as for only one boundary condition on the triangular
domain.

IV. CONCLUSIONS

The ground states of the triangular Ising model on a finite
triangular domain cannot be mapped to a dimer covering and
cannot therefore be classified into string sectors. Boundary
conditions exist for the triangular domain that give interme-
diate degeneracy and show interesting relationships to the
rectangular periodic domain. Although it is known that cer-
tain boundary conditions on finite frustrated systems can lift
the thermodynamic degeneracy, not a lot is known, the re-
sults of Dharet al. [13] notwithstanding, about the relation-
ship between boundary conditions and degeneracy for gen-
eral frustrated systems. For example, the manifold of
maximally degenerate boundary conditions corresponds to
the string sector withp=2/3 if one restricts oneself to the set
of limiting periodic boundary conditions on a rectangular
domain, but other maximally degenerate limiting boundary
conditions exist. The same applies to boundary conditions
that give intermediate degeneracy.
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